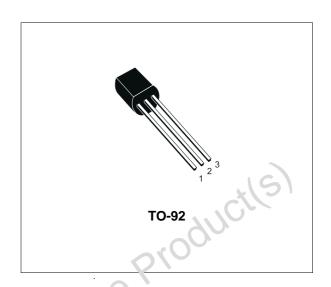


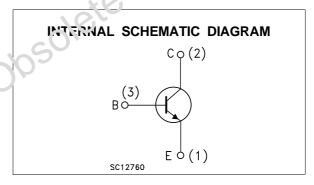
STBV68

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED

APPLICATIONS:


 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING


DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The STBV68 is designed for use in compact fluorescent lamp application.

oducils

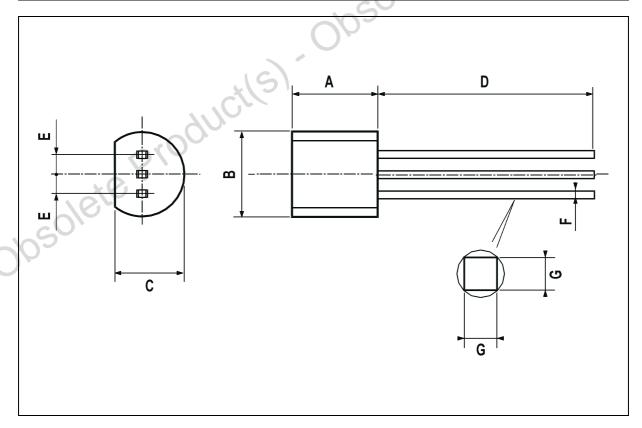
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{OE} 3	Collector-Emitter Voltage (V _{BE} = 0)	600	V
7050	Collector-Emitter Voltage (I _B = 0)	400	V
V _{ЕВО}	Emitter-Base Voltage (Ic = 0)	9	V
Ic	Collector Current	0.6	Α
Ісм	Collector Peak Current (tp < 5 ms)	1.2	Α
I _B	Base Current	0.3	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	0.6	Α
P _{tot}	Total Dissipation at T _{amb} = 25 °C	0.9	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 2000 1/4

THERMAL DATA

R _{thj-amb} Thermal Resistance Junction-ambient	Max	140	°C/W
--	-----	-----	------


ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

ector Cut-off ent (VBE = -1.5 V) ter Cut-off Current 0) ector-Emitter aining Voltage 0) ector-Emitter ration Voltage e-Emitter ration Voltage Current Gain JCTIVE LOAD Time on = 300µs, duty cycle =	V _{CE} = 600 V V _{BE} = 9 V I _C = 1 mA I _C = 0.1 A I _C = 0.15 A I _C = 0.25 A I _C = 0.15 A I _C = 0.15 A I _C = 0.15 A I _C = 0.15 A I _C = 0.25 A	$L = 25 \text{mH}$ $I_B = 20 \text{ mA}$ $I_B = 50 \text{ mA}$ $I_B = 100 \text{ mA}$ $I_B = 20 \text{ mA}$ $I_B = 50 \text{ mA}$ $VCE = 5 \text{ V}$ $V_{CE} = 10 \text{ V}$ $V_{clamp} = 300 \text{ V}$ $L = 3 \text{ mH}$	7 3	0.35 0.8 3.0	250 1 0.75 1.5 5 1.0 1.2 15 6	μA MA V V V V V V V Mass Mass V Mass Mas
ector-Emitter aining Voltage 0) ector-Emitter ration Voltage e-Emitter ration Voltage Current Gain	I _C = 1 mA I _C = 0.1 A I _C = 0.15 A I _C = 0.25 A I _C = 0.1 A I _C = 0.15 A I _C = 0.15 A	$I_{B} = 20 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $I_{B} = 100 \text{ mA}$ $I_{B} = 20 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $V_{CE} = 10 \text{ V}$	7 3	0.8 3.0	0.75 1.5 5 1.0 1.2	V V V V
aining Voltage 0) ector-Emitter ration Voltage e-Emitter ration Voltage Current Gain	Ic = 0.1 A Ic = 0.15 A Ic = 0.25 A Ic = 0.1 A Ic = 0.15 A Ic = 0.1 A Ic = 0.25 A	$I_{B} = 20 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $I_{B} = 100 \text{ mA}$ $I_{B} = 20 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $V_{CE} = 10 \text{ V}$	7 3	0.8 3.0	1.5 5 1.0 1.2	V V V
ration Voltage e-Emitter ration Voltage Current Gain	I _C = 0.15 A I _C = 0.25 A I _C = 0.1 A I _C = 0.15 A I _C = 0.1 A I _C = 0.25 A	$I_B = 50 \text{ mA}$ $I_B = 100 \text{ mA}$ $I_B = 20 \text{ mA}$ $I_B = 50 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $V_{CE} = 10 \text{ V}$	3	0.8 3.0	1.5 5 1.0 1.2	V V V
ration Voltage Current Gain	I _C = 0.15 A I _C = 0.1 A I _C = 0.25 A	I _B = 50 mA V _{CE} = 5 V V _{CE} = 10 V	3	0.3	1.2 15	V
	I _C = 0.25 A	V _{CE} = 10 V	3	0.3		μs
JCTIVE LOAD Time on = 300μs, duty cycle =	I _C = 0.1 A I _{B1} = - I _{B2} = 20 mA 1.5 %	V _{clamp} = 300 V L =3 mH	PY	0.3		μs
on = 300μs, duty cycle =	1.5 %	alete				
a. (cilsi					
Shlogin						
	Produ	Produ	Produc	Rroon	CTIVE LOAD I _C = 0.1 A V _{clamp} = 300 V L = 3 mH 0.3 m = 300μs, duty cycle = 1.5 %	3 Production of the second of

4 2/4

TO-92 MECHANICAL DATA

DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.58		5.33	0.180		0.210
В	4.45		5.2	0.175		0.204
С	3.2		4.2	0.126		0.165
D	12.7			0.500		4(5)
Е		1.27			0.050	
F	0.4		0.51	0.016	640	0.020
G	0.35			0.14		

47/

obsolete Product(s). Obsolete Product(s).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

47/